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TIME SERIES
Estimation Problems:

Given a random time series {z(t): t < t,}
z(t) 2 RN




Turning a model into a state estimation problem

o, u(z,t) = v o,,u(z,t) + f(t)
u(z,0) = uy(2)
u(o,t) = g(t) u(l,t) = h(t

Discretizing:

X(t) ~ [uy(D),u(®)...uy(O]'

IS the state variable, obeying
X(t+ot) = A x(t) + B g(t)




Statement of the Problem

MODEL (Langevin Problem):




GOAL: estimate moments

(at least) find mean conditioned on data:
Xs(t) = E[ x(O| y1,---» Yul

and

Covariance matrix (uncertainty)
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Optimal Estimate of Discretized
Linear Model with Gaussian Noise

Let z, = u(x) where x;, 2 Q

Bz+n, ,=F
Dz+ny =Y

min, J = <NT N >




A Nonlinear Example

Stochastic Dynamics (Langevin Problem):
dx(t) = f(x(t)) dt + « dW(t)
with
V(X) = -2Xx2+x4 g
f(X) = -V'(X)=4x(1-x?) s
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- Eo‘mogorov !quatlon

o, P = -0, [f(X) P] + k20, P/2

POX D11 = Ps(X)
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BAYESIAN STATEMENT

= P(X|D) 7/ Prior £ Likelihood
= Use data for the likelihood
= Use model for the prior




Extended Kalman Filter
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Alternative Approaches

= KSP: optimal, but impractical

= ADJOINT/4D-VAR: optimal on
linear/Gaussian

(Restrepo, Leaf, Griewank, SIAM J. Sci Comp 1995)

= Mean Field Variational Method
Eyink, Restrepo, Alexander, Physica D, 200




Path Integral Method

» Related to simulated annealing
= It could be developed as a black box
= Simple to implement




Discretized using explicit Euler-Maruyama scheme
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Let n (t,) = W(t, + 5t)-W(t,),
at times t,, k=0,1,2,...,

Suppose n(t,) iIs Gaussian
Prob n(t) »exp(-1/2 >, | n (t) |?).

Hence exp(-A S fort=1t,, t,, ...t




" NN
Agyn ~ 2ik=0' "1 [ [Ke1- %78t —F(X, 1) 1™ D (X, 1)
[(Xys1-Xi) /6t -T(X, )] 174

To Include influence of observations
use Bayes' rule.
This modifies Action:




lter Results
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Estimation Applied To Steady
State Hydrology

= Estimate hydraulic
head in domain

= Estimate material
properties in domain

_____
—————— oy o



Simplest Boundary Value Problem

MODEL: =V - [K(z)Vu] — f(z) = n(zx) =€

u|o0, continuous
n - K(x)Vu|sn, continuous
ulogn = U+0(x)
DATA: Y(z)=T(u, K)+p

ﬂ,(m), 9($), p(m) are known statistical quantities



OUR APPROACH

= USE DATA-DRIVEN CLASSIFICATION:
estimates partitioning into homogeneous layers.

Support Vector Machines

= DISCRETIZE Variational formulation for the
model plus constraint (via Lagrange multiplier):




Data-Driven Classification

Estimate the boundaries between heterogeneous geologic facies

e Data

e low K
* high K

K; = K(Xa) e.g., conductivity ol
hjk = h(xj:tﬁ;)i e.g., head :

e Data are sparse

e Measurements are well differentiated e

Measurements of system parameters (K) == forward FD problem

Measurements of system states (h) == inverse FD problem




e low K

e Assign indicators to data, * high&
I(x;) =1(0) if x; € Mi(Ms)

e 7(x,x) = an estimate of I(x)

e minR = [ ||I - Z||dP(I, {x}¥,)

e Geostatistics (Kriging)
1. the L? norm
2 the indicator function 7(x) is a random field, and
. the choice of sampling locations {x;}Y , as deterministic. —
4 Variance: o7 = [(I —I)*dP(I)

e SVMs
1. the L' norm
2. the indicator function I(x) as deterministic and
3. the choice of sampling locations {x;}» , as random. —
4. Expected risk: min Rexp, = [ |1 — IidP({x} > i)




Support Vector Machines

= Alternative to Kriging

= Very good alternative when sample
densities are too low for Kriging




Heterogeneous Sub-Surface

In each subdomaini=1, 2, .., M

K(z,w)
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u(z,w) = ) piw)e;(e)



(Weak) Variational Formulation

= Let P:=[u,K]

= Use standard machinery to solve nonlinear
problem but use weighted norms (locally in each
subdomain).

=~ Use Newton solver but decide whether to do




Weak Formulation (no noise)

1
6(P) = SIT(P)~ I +S(P — P)
Dirichlet-like Energy  S(P) = i[/ﬂ(;?PF—i—sz)dm]
G(P)=-V-(KVP)-f=0

(P, A) = ¢(P) — (A, G(P))

(®'(P),v) — (A,G'(P)v) = 0, VvelX
(v, G(P)) 0, VveY”

X, Y* Banach spaces



Newton Solution

Find corrections [r,A]" to [P,A]"

) JCPN -G P

_ [ —¢'(P) + G'(P)" A
—G(P)
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Final Comments

= Model error formulation vs. closure?
= Already existing nonlinear solvers.

= Weak formulation automatically takes care
of boundary conditions at the layer
Interfaces.

= Can give a-priori estimates of error.




Further Information:

http://www.physics.arizona.edu/—restrepo




